Big Picard Theorem for Meromorphic Mappings with Moving Hyperplanes in P n (C)

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Big Picard Theorem for Quasiregular Mappings into Manifolds with Many Ends

We study quasiregular mappings from a punctured Euclidean ball into n-manifolds with many ends and prove, by using Harnack’s inequality, a version of the big Picard theorem.

متن کامل

A Unicity Theorem for Meromorphic Mappings

We prove a unicity theorem of Nevanlinna for meromorphic mappings of P into Pm. 1. INTR~DuOTI~N As an application of Nevanlinna’s second main theorem and Borel’s lemma, R. Nevanlinna proved that for any two meromorphic functions in the complex plane @ on which they share four distinct values, then, these two meromorphic functions are the same up to a Mijbius transformation. Since then, there ha...

متن کامل

BIG PICARD THEOREMS FOR HOLOMORPHIC MAPPINGS INTO THE COMPLEMENT OF 2n+1 MOVING HYPERSURFACES IN CP

In this paper, we generalize the Big Picard Theorem to the case of holomorphic mappings of several complex variables into the complement of 2n+1 moving hypersurfaces in general position in the n-dimensional complex projective space.

متن کامل

Difference Picard theorem for meromorphic functions of several variables

It is shown that if n ∈ N, c ∈ C, and three distinct values of a meromorphic function f : C → P of hyper-order ς(f) strictly less than 2/3 have forward invariant pre-images with respect to a translation τ : C → C, τ(z) = z + c, then f is a periodic function with period c. This result can be seen as a generalization of M. Green’s Picard-type theorem in the special case where ς(f) < 2/3, since th...

متن کامل

Elimination of Defects of Meromorphic Mappings of C into P(c)

The Nevanlinna defect relation and other results on the Nevanlinna theory assert that each meromorphic mapping f of C into P(C) has few deficient hyperplanes in P(C) . However, it seems to me that meromorphic mappings with a deficient hyperplane must be very few. In this paper, we show that for an arbitrary given transcendental meromorphic mapping f (which may be linearly degenerate), we can el...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ukrainian Mathematical Journal

سال: 2015

ISSN: 0041-5995,1573-9376

DOI: 10.1007/s11253-015-1048-6